

Abstracts

High-speed MSM/HEMT and p-i-n/HEMT monolithic photoreceivers

P. Fay, C. Caneau and I. Adesida. "High-speed MSM/HEMT and p-i-n/HEMT monolithic photoreceivers." 2002 Transactions on Microwave Theory and Techniques 50.1 (Jan. 2002, Part I [T-MTT] (Mini-Special Issue on 1999 International Microwave and Optoelectronics Conference (IMOC'99))): 62-67.

The performance of monolithically integrated metal-semiconductor-metal/high electron-mobility transistor (MSM/HEMT) and p-i-n/HEMT photoreceivers is reported. p-i-n/HEMT photoreceivers have been designed and fabricated, resulting in measured transimpedances of 700 /spl Omega/ , an 8.3-GHz bandwidth, and measured sensitivities of -17.7 dBm at 10 Gb/s and -15.8 dBm at 12 Gb/s for a $2^{31} - 1$ pattern length pseudorandom bit sequence at a bit error rate of 10^{-9} . Low-noise MSM-based photoreceivers have also been designed and fabricated, and frequency response, noise, and sensitivity measurements have been performed. Sensitivities of -16.9, -13.1, and -10.7 dBm were obtained at 5, 8, and 10 Gb/s, respectively. A direct comparison of p-i-n- and MSM-based photoreceivers is undertaken on photoreceivers with matched responsivity and bandwidth. Measurement and theoretical analysis of circuit and device noise indicates an anomalous sensitivity penalty in MSM-based receivers that arises due to intersymbol interference.

[Return to main document.](#)